

Lecture 20

NP-complete problems, reductions

CS 161 Design and Analysis of Algorithms Ioannis Panageas

Example of a reduction

- The 3-SAT problem is NP-complete
- The K-Graph Independent Set ($K-\mathrm{GIS}$) problem is in NP but we don't know if it is hard
- Now, let's reduce the 3-SAT to K-GIS using a polyreduction.
- Hard part: find the reduction! how to write 3-SAT as a special case of $K-\mathrm{GIS}$.

The 3-SAT problem

- SAT (Satisfiability): given a boolean formula, can you make it TRUE;

$$
\left(x_{1} \wedge\left(x_{2} \vee \bar{x}_{3}\right)\right) \wedge\left(\left(\bar{x}_{2} \wedge \bar{x}_{3}\right) \vee \bar{x}_{1}\right) \Rightarrow x_{1}=1, x_{2}=0, x_{3}=0
$$

- 3-SAT: AND clauses, each clause contains 3 variables by OR. For example:

$$
\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right)
$$

- Cook's Theorem: 3-SAT is NP-complete

K-Coloring

- Given a graph $G(V, E)$, color the vertices using at most K colors so that all neighboring vertices do not share the same color!
- For example, the following graph can be colored with 4 colors.
- Question: Is K-Coloring NP-complete?

Answer: YES

- First K-Coloring belongs to NP: We can verify in polynomial time if all edges have incident vertices with different colors (in $\Theta(E+V)$ time).
- Then reduce (polynomial reduction) 3-SAT to K-Coloring.

Reduction of 3-SAT to 3-colorability

 Goal: We want to solve the 3-SAT problem by making use of an "oracle" that can answer any instance of the 3-colorability problem. Thought process:- The input to the 3-SAT problem is a Boolean expression, e.g.

$$
\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{4} \vee x_{5}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{5}\right) .
$$

- The input to the 3 -colorability problem is a graph.
- So for the reduction, we have to transform a Boolean expression E into a suitable graph G.
Question: How do we relate a Boolean expression to 3-colorability?
Observation: For a Boolean expression E to be satisfiable, every clause ($x \vee y \vee z$) in E must evaluate to true. [Here, x, y, z are literals.]
- This means x, y, z cannot all be assigned false.

Reduction of 3-SAT to 3-colorability

Key Idea 1: Consider a 3-coloring of the following graph:

If vertices $\triangle,(2)$ have distinct colors, then the color of the "output vertex" ($\left.{ }^{(}\right)$can be chosen to be any of the three colors.

If vertices $(x),(1)$ have the same color, then the color of the "output vertex" (a) must also be that same color.

Reduction of 3-SAT to 3-colorability

 Let's now consider the satisfiability of a single clause ($x \vee y \vee z$). Key Idea 2: Consider a 3-coloring of the following "combined graph", using three colors T, F, N (for "true", "false", "neutral").

Color each of the vertices $(x,(\otimes),(2)$ either \mathbf{T} or \mathbf{F}, depending on whether we assign the corresponding variable to be true or false. Key Observation 1: As long as $\times,(\sqrt{2},(z)$ are not all colored F, then we can always choose the final "output vertex" (2) to have color T.
Key Observation 2: If all three $\circledast,(\downarrow$, , (2) are colored \mathbf{F}, then the final "output vertex" ()) must have color \mathbf{F}.

Reduction of 3-SAT to 3-colorability

Key Idea 3: Consider the following "gadget graph":

Let each clause $(x \vee y \vee z)$ be associated to a gadget graph.

- The three literals x, y, z in $(x \vee y \vee z)$ shall correspond to the "input vertices" of this gadget graph.
- The final "output vertex" of this gadget graph shall be connected to two other vertices with colors \mathbf{F} and N respectively.
Key Observation: This gadget graph has a 3 -coloring if and only if the vertices $(x),(1),(2)$ do not all have color \mathbf{F}.

Reduction of 3-SAT to 3-colorability

Example: The Boolean expression " $\left(x_{1} \vee \neg x_{2} \vee x_{3}\right)$ " is transformed to the following graph:

Reduction of 3-SAT to 3-colorability

- Gadget graph for $(x \vee y \vee z)$:

- Example:
$(u \vee \bar{v} \vee w) \wedge(v \vee x \vee \bar{y})$

Reduction of 3-SAT to 3-colorability

- Observe that the reduction is polynomial!

Claim 1: ϕ is satisfiable implies constructed Graph is 3-colorable.

Proof:

- If x_{i} variable is assigned True, color vertex $x_{i} \mathrm{~T}$ and $\bar{x}_{i} \mathrm{~F}$.
- For each clause ($x \vee y \vee z$) at least one of x, y, z is colored T. Graph gadget for clause ($x \vee y \vee z$) can be 3 -colored such that output is color is T .
- Therefore, no two neighboring vertices have the same color and we used colors T, F, N.

Reduction of 3-SAT to 3-colorability

Claim 2: Constructed Graph is 3-colorable (T, F, N) implies ϕ is satisfiable.

Proof:

- Nodes True, False, Neutral use colors T, F, N(need all three)
- If x_{i} is colored T then set variable x_{i} to be True, this is a truth assignment.
- Consider any clause ($x \vee y \vee z$). It cannot be that all x, y, z are False. If so, the output of Graph gadget for ($x \vee y \vee z$) has to be colored F but output is connected to nodes Neutral and False!

K-Graph Independent Set (K-IS)

- Set of K nodes, all pairs are NOT adjacent to each other
- For example, the following blue nodes are $4-I S(K=4)$

- Question: Is K-IS NP-complete?

Answer: YES

- First K-IS belongs to NP: We can verify in polynomial time if a set of K nodes are not adjacent to each other (in $\Theta\left(K^{2}\right)$ time).
- Then reduce (polynomial reduction) 3-SAT to K-IS.

Reduction of 3-SAT to K-IS

Given a formula ϕ with n literals and m clauses that we want to check if it satisfiable.

Construct a graph $G(V, E)$ as follows:

- For each clause ($x \vee y \vee z$) in ϕ, create three new vertices, one for each variable, and link all the vertices $(x, y),(x, z),(y, z)$.
- Link each vertex (literal) x_{i} with all its the corresponding negations.
- The construction can happen in polynomial time since $|\mathrm{V}|=3 \mathrm{~m}$, $|\mathrm{E}| \leq 3 m+2 n^{2}$
- ϕ is satisfiable if and only if there exists an IS of size m !

Reduction of 3-SAT to K-IS

Vertex Cover (VC)

- Vertex Cover (VC): is there a subset of at most k vertices, such that it connect to all edges?

e.g. in this graph, 4 of the 8 vertices is enough to cover
- Question: VC is NP Complete?
- Answer: YES
- First, it belongs in NP (why?)
- Then Reduce 3-SAT to VC (or there is something simpler?)

Reduction of K-IS to Vertex Cover (VC)

- Given a graph $G(V, E)$, with $|\mathrm{V}|=\mathrm{n}$, suppose there exists an Independent Set of size k.
- Lemma: If $G(V, E)$, is a graph, then set of vertices S is an independent set if and only if $V-S$ is a vertex cover.

Proof: Let S be an independent set, and $e=(u, v)$ be some edge. Only one of u, v can be in S. Hence, at least one of u, v is in $V-S$. So, $V-S$ is a vertex cover. The other direction is similar.

CLIQUE

- K-clique: k vertices, all vertices are adjacent to each other
- E.g. both of these are 4-CLIQUE

- CLIQUE Problem: in a graph, does k-clique exists?
- Question: CLIQUE is NP-Complete?
- Answer: YES
- First, it belongs in NP (why?)
- Then, reduce Independent set to CLIQUE

Reduction of IS to CLIQUE

- Reduce Independent set (IS) to CLIQUE
- Complement a graph!
- CLIQUE become IS, IS become CLIQUE
- (most reduction are complicated, this is exceptionally simple...)

Max Clique $=5$
Max IS = 2

Max Clique $=2$
Max IS = 5

Set Cover

- Set Cover: Given a set U of elements and a collection of sets $S_{1} S_{2} S_{3} \ldots S_{m}$ subsets of U. Is there a collection of at most k sets, whose union is U ?

Reduction of VC to Set Cover

- Question: Set Cover is NP-Complete?
- Answer: YES
- First, show that is NP (Easy)
- Then, prove that vertex cover can reduce to set cover.

Reduction of VC to Set Cover

- Let $G=(V, E)$ and k be an instance of vertex cover
- Now,
$-U=E$ (set of edges)
- Create set of $S_{1}, S_{2}, S_{3} \ldots$.
- S_{1} = all edges adjacent to node 1
- S_{2} = all edges adjacent to node 2
- Etc
- Conclusion: If G has a vertex cover of size $\leq k$, then U has a set cover $\leq k$.

Subset Sum

- Subset Sum: (Recall the Reformulation of the partition problem!) Given a set S of integers and a target integer t, does there exist $S^{\prime} \subseteq S$ with $\sum_{x \in S^{\prime}} x=t$.
- Recall that Subset Sum is reduced to Knapsack!
- Question: Subset Sum is NP-Complete?

Answer: YES

- First, it belongs in NP (why?).
- Then, reduce VC to Subset Sum.

Reduction of VC to Subset Sum

- Let $G=(V, E)$, with $|\mathrm{V}|=n,|\mathrm{E}|=m$ and and assume that has a VC of size k. Number the vertices from 0 to $n-1$ and the edges from 0 to $m-1$.
- Let $S=\left\{x_{0}, \ldots, x_{n-1}\right\} \cup\left\{y_{0}, \ldots, y_{m-1}\right\}$. Each x_{i} consists of $m+1$ digits (in base 10) and can be written as $x_{i, m} x_{i, m-1} \ldots x_{i, 0}$. The digit $x_{i, m}$ is always 1. Each remaining $x_{i, j}$ is 1 if vertex i is an endpoint of edge $j, 0$ otherwise.
- Each y_{i} has $i+1$ digits: a 1 followed by i O's. Finally, let t be the base 10 representation of the integer k followed by m 2's.

Reduction of VC to Subset Sum

The reduction on an example
Vertex Cover instance

Subset Sum instance

Reduction of VC to Subset Sum

Graph has VC of size k implies that there is a subset of sum k.

Proof.
Assume the graph has a VC V_{0} of size k. Let
$S_{0}=\left\{x_{i} \mid i \in V_{0}\right\} \cup\left\{y_{i} \mid\right.$ only one endpoint of edge $\left.i \in S_{0}\right\}$.

Since there are three 1's in positions 0 through $m-1$, there will be no carries from those positions. The choice of S_{0} items guarantees each of these digit positions has sum 2 , as required by t. Since $\left|V_{0}\right|=k$, the x_{i}^{\prime} 's in S_{0} will contribute exactly k 1's in position m for a total of k.

Reduction of VC to Subset Sum

There is a subset of sum k imples the graph has VC of size k

Proof.
Assume S_{0} is a set of numbers with sum k. Let V_{0} be the set of all vertices i for which $x_{i} \in S_{0}$.

Since there are no carries in the lowest m digits, there must be exactly k vertices in V_{0} (to get t to start with k) and each edge must have at least one endpoint in V_{0} (observe that if edge i has no endpoints in V_{0} then S_{0} has only a single 1 among all the i-th digits and the sum of S_{0} cannot have a 2 in that position).

Web of reductions of the Lecture

ThANK YOU

This is the last lecture of CS161!

